
CHAPTER 1 � MANUSCRIPT

In contrast, for the mixed ensemble we have �2 6= �, and Tr (�2) < 1. The

decomposition �=
P

iwi j 
(i) ><  (i)j is not unique, as we shall see in the examples.

EXP Example 1

We work out an illustrative example for spin 1=2. The linear space

has dimension 2, and the density operator is represented by a (2�2)

matrix. Due to hermiticity and normalization, we are left with three

real independent parameters to determine �. Those parameters can

be identi�ed with the three mean values for the average of the spin

operator, [Sx] ; [Sy] ; [Sz]. This is a particular characteristic of spin

1=2. For convenience, we introduce the Pauli spin operator �!� by

�!
S=

~
2
�!� ;

with the standard representation:

�x =

0BB@ 0 1

1 0

1CCA ; �y =

0BB@ 0 �i

i 0

1CCA ; �z =

0BB@ 1 0

0 �1

1CCA : (1.12)

We note that the three Pauli matrices plus the identity form a basis

of the linear space of the complex (2 � 2) matrices. So, in general

we have

� =
1

2
m0 1+

1

2
mx�x +

1

2
my�y +

1

2
mz�z =

1

2
m0 1+

1

2
�!m � �!� ; (1.13)

12



CHAPTER 1 � MANUSCRIPT

with the vector �!m= (mx;my;mz) being called polarization. Due to

hermiticity of � and the Pauli matrices, all the coe¢ cients in (1.13)

are real. Also, remembering that Pauli matrices are traceless, the

normalization condition reads:

Tr (�) = 1 =
1

2
m0 Tr (1) = m0 ;

and we are left with three real independent parameters given by

�!m= (mx;my;mz), with the density operator written in the general

form:

� =
1

2

�
1+�!m � �!�

�
:

Using the algebra associated with the Pauli matrices, one easily �nds

that

�2 =
1

4

h
1+ 2�!m � �!�+

��!m � �!�
�2i

=
1

2

��
1 +m2

2

�
1+�!m � �!�

�
;

with m2 =
���!m��2 = m2

x +m2
y +m2

z. Taking the trace, we obtain

Tr
�
�2
�
=
1 +m2

2
5 1 ;

implying that m2 5 1, or 0 5
���!m�� 5 1. We have a pure ensemble

if and only if m2 = 1, which means maximum polarization. For the

mixed ensemble, 0 5 m2 < 1. The case m = 0 is called unpolarized

or random ensemble. Using the anticommuting properties of Pauli
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matrices:

�x�y = ��y�x = i�z ;

�y�z = ��z�y = i�x ;

�z�x = ��x�z = i�y ;

it follows

[Sx] = Tr (�Sx) =
~
2
mx ;

[Sy] = Tr
�
�Sy

�
=
~
2
my ;

[Sz] = Tr (�Sz) =
~
2
mz :

For the random ensemble, [Sx] = [Sy] = [Sz] = 0, that is m = 0 and

the density operator is written as:

�0 =
1

2
1
:
=
1

2

0BB@ 1 0

0 1

1CCA : (1.14)

We will discover that this case corresponds to the maximal mixing.

Suppose that we use the basis of states that diagonalize Sz. We call

them jẑ; + > and jẑ;� >, corresponding to the eigenvalues
~
2
and

�~
2
respectively. The density operator for the random case in (1.14)

can be represented in the form

�0 =
1

2
jẑ; + >< ẑ; +j +1

2
jẑ;� > < ẑ;� j =

= w+jẑ; + >< ẑ; +j +w�jẑ;� > < ẑ;� j ;
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with w+ = w� =
1

2
, i.e. �0 can be considered as a mixing of the

states jẑ; + > and jẑ;� > with equal weighs. One important issue

for the mixed ensemble, is that the decomposition in terms of pure

ensembles is not unique. In the example above, we can consider a

di¤erent basis of states, let�s say the states jx̂; + > and jx̂;� > that

diagonalize the component Sx of the spin operator. We have the

unitary transformation:

jẑ; + >=
1p
2
jx̂; + > +

1p
2
jx̂;� > ;

jẑ;� >=
1p
2
jx̂; + > � 1p

2
jx̂;� > ;

that leads to

�0 =
1

2
jx̂; + >< x̂; +j +1

2
jx̂;� > < x̂;� j ;

which means that the random ensemble (1.14) may be considered,

at the same time, as a mixing of states jx̂; + > and jx̂;� > with

equal weighs. Actually, there is an in�nite number of possibilities,

saying that the random mixed ensemble can be decomposed equally

in terms of black and white, or red and green, or blue and yellow,

and so on, at the same time. This fact is a manifestation of the

quantum nature of the state, in spite of the maximal mixture. The
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pure ensemble can be parameterized as:

�!m=(sin � cos'; sin � sin'; cos �) ;

with j ~mj2 = 1, with the angles (�; ') giving the direction of the

polarization. In matrix form, the density operator reads:

� =

0BB@ 1+cos �
2

e�i' sin �
2

ei' sin �
2

1�cos �
2

1CCA :

For many other examples, see the exercise section. �

A 1.3 Coupled systems and non-separability

Two quantum systems that interacted in the past, remain correlated forever and cannot

be represented separately by ket states. In plain words, a subsystem can not in general,

be described by a wave function. This feature is called the Non-separability Property.

This is a limitation of the wave function formalism, since in Statistical Mechanics,

one usually wants to refer to a part of the whole system, independently of the rest.

Important cases are those when the system is coupled to reservoirs, and we want

to eliminate the latter degrees of freedom from the physical description. Those are

instances where the density operator furnishes a superior view of the state of the system,

since the wave function representation has been ruled out. To fully understand the non-
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separable case, we will �rstly discuss the case of non-interacting systems, that is systems

that are separable.

A diluted system, as for example an ideal gas, can be well approximated as a

system of many non-interacting particles (molecules). Within this ideal limit, particles

are not correlated, and the Statistical Mechanics can be reduced to a one-particle

description. In a general way, let us consider two systems which span two di¤erent

Hilbert spaces of ket states, R and S, with basis fjN >g and fjn >g, respectively. The

combined space of the two systems, R � S, is spanned by the direct product states,

which in the Dirac�s notation, are written as:

jNn >� jN > jn > :

Direct products of operators are represented by direct products of the corresponding

matrices.

Example. Direct product of two matrices A and B, where:

A=

0BB@ a11 a12

a21 a22

1CCA ; B=

0BBBBBB@
b11 b12 b13

b21 b22 b23

b31 b32 b33

1CCCCCCA :

One de�nes A�B as the matrix:

A�B�

0BB@ a11B a12B

a21B a22B

1CCA :
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The direct product results in a (6� 6) matrix, since the terms aijB are understood as

(3� 3) submatrices.

The following properties are easily demonstrated:

1. Matrix elements are understood as:

< NnjA�BjN 0n0 >=< N jAjN 0 >< njBjn0 > :

In particular, scalar products are obtained as:

< NnjN 0n0 >=< N jN 0 >< njn0 >= �NN 0�nn0 :

2. From the point above, we get:

Tr (A�B) = Tr (A) Tr(B) :

3. Direct products of column (row) vectors are obtained using the same rule de�ned

for matrices. Take for example the case below:

0BBBBBB@
1

0

0

1CCCCCCA�
0BB@ 0

1

1CCA =

0BBBBBBBBBBBBBBBBBB@

1 �

0BB@ 0

1

1CCA
0 �

0BB@ 0

1

1CCA
0 �

0BB@ 0

1

1CCA

1CCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBB@

0

1

0

0

0

0

1CCCCCCCCCCCCCCCCCCA

:
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A general state of the system is written as:

j >=
X
N;n

C(N; n) jN > jn > ;

but since the systems are uncorrelated, one must have C(N; n) = C(N)c(n) and the

state is separable:

j >=
X
N;n

C(N; n) jN > jn >=
 X

N

C (N) jN >

! X
n

c (n) jn >
!
= j R > j S > :

The same is true for the density matrix, which in general is written as

� =
X

N;M;n;m

jNn >< Nnj�jMm >< Mmj ;

but for uncorrelated systems, one should have

< Nnj�jMm >= ANMBnm ;

factorizing the density operator as:

� =

 X
N

ANM jN >< M j
! X

n

Bnmjn >< mj
!
= �R � �S ; (1.15)

in the form of a direct product. Separability for the density operator has a broader sense

in Quantum Mechanics, but we shall not pursue this discussion here [4]. A situation

as the one depicted in (1.15), is called simple separability. In the case of an ideal gas,

in the absent of interactions, all the particles are uncorrelated. If we use the particle

coordinates as labels, separability leads to:

�(x1;x2; :::;xN) = �1(x1)� �2(x2)� :::� �N(xN) ;
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where N is the total number of particles and �i(xi) is the density operator for one-

particle states. If the particles are identical,

�j = �1;

for all j = 2; 3; :::; N , and the factorization is written as

�(x1;x2; :::;xN) =
NO
i=1

�1(xi) :

In particular, if �1 is normalized, we obtain:

Tr [�(x1;x2; :::;xN)] =
NY
i=1

Tr [�1(xi)] = 1 :

In this case, the calculation of the density operator is reduced to the calculation of the

one-particle operator �1(x).

In the interacting case, correlations among the particles appear, and the states

are not any more separable. Assume that at the initial time (t0 = 0), the two subsystem

are not interacting, and we prepare the initial state as separable:

j ; 0 >= jN > jn > :

After that, the interaction is turned on during a �nite interval of time, and �nally

turned o¤ again. The interaction made the systems to be correlated. The asymptotic

state (t!1) is of the type:

j ;1 >=
X
M;m

a1(M;m;N; n)jM > jm > ; (1.16)
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where the coe¢ cient a1(M;m;N; n) is the probability amplitude for the transition

jN > jn > ! jM > jm >. Since the systems are correlated, we have in general that

a1(M;m;N; n) 6= C(M;N)c(m;n) ;

for all pairs (M;m) and (N; n), and the state (1.16) is not separable. In this case, we

cannot assign a wave function to a subsystem (either R or S). This result is called

nonseparability principle.

A 1.4 Density matrix of a subsystem

We have seen in the previous subsection that the language of ket states does not allow

us, in general, to describe an isolated system from the remainder of the universe. But

this is possible when one describes the state of the system through the density operator.

Consider two interacting quantal systems, whose states span the spaces R and S. We

want to pay attention to subsystem S, leaving R undetected (R may be a reservoir,

and we want to eliminate its degrees of freedom). The states of the total system span

R� S, but in general, physical states are not separable in the presence of interactions.

Assume basis fjN >g and fjn >g for R and S, respectively, as in the subsection above.

We want to calculate an average of an observable that refers only to S, which is written

in the form


 = IR �
S ;
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where IR is the identity in R:

[
] = Tr [� (IR �
S)] =
X

N;M;n;m

< Nnj�jMm >< Mmj (IR �
S) jNn > : (1.17)

Note that < Mmj (IR �
S) jNn >= �MN < mj
Sjn >, and substituting in (1.17)

yields:

[
] =
X
n;m

< mj
Sjn >
 X

N

< Nnj�jNm >

!
:

The quantity
P

N < Nnj�jNm > is the partial trace of � in the R space. We then

make the following de�nition:

De�nition 5 Reduced density operator, ��S, relative to S.

Its matrix elements in S are given by:

< nj��Sjm >�
X
N

< Nnj�jNm > : (1.18)

We rewrite the above de�nition (1.18) in a formal fashion as:

��S = TrR (�) ;

meaning that ��S is obtained from � by taking the partial trace in R. The average value

(1.17) is now referred to space S only:

[
] = Tr [� (IR �
S)] = TrS [��S
S] :

By taking the partial trace, we lose the detailed information relative to subsystem R.

It remains to prove that ��S is a bona �de density operator. This is achieved, if we

assume that � is a density operator for the whole universe R� S:
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i) hermiticity,

< nj��Sjm >�
X
N

< Nnj�jNm >=
X
N

< Nmj�jNn >�=< mj��Sjn >�;

because � is Hermitian;

ii) normalization,

TrS (��S) =
X
n

< nj��Sjn >�
X
n

X
N

< Nnj�jNn >= TrS [TrR (�)] = Tr (�) = 1 ;

iii) positivity,

< nj��Sjn >�
X
N

< Nnj�jNn > > 0 ;

since it is a sum of positive terms.

To measure properties of the S subsystem we do not need the complete density

operator �, but only the reduced operator ��S relative to S. Detailed information of the

other subsystem is lost, but some �average properties�of R are still contained in ��S.

EXP Example 2

Consider two interacting particles of spin 1=2, which are

coupled in a singlet state of the total spin:

j 0 >=
1p
2
j+iR j�iS �

1p
2
j�iR j+iS ; (1.19a)

where we have used the labels R and S for the particles. The above

state is said to be entangled, and clearly there is no ket state to
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represent either subsystem R or S. The state (1.19a) is a pure state,

with density operator given by:

� = j 0 ><  0j =

=
1

2
fj+iR j�iS S h�jR h+j + j�iR j+iS S h+jR h�j �

� j+iR j�iS S h+jR h�j � j�iR j+iS S h�jR h+jg :

We now take the partial trace relative to R:

��S = TrR (�) = R h+j� j+iR + R h�j� j�iR =

=
1

2
j�iS S h�j +

1

2
j+iS S h+j

:
=
1

2

0BB@ 1 0

0 1

1CCA
S

: (1.20)

Note that ��S represents a mixed ensemble (maximum mixture),

while the original � was a pure state: by eliminating the degrees

of freedom of R, some information is lost in a way that cannot be re-

covered lately. Just to stress the irreversible character of the process,

we note that partially tracing the density matrix of the pure ensem-

ble of the triplet state

j 1 >=
1p
2
j+iR j�iS +

1p
2
j�iR j+iS

leads to the same reduced density matrix (1.20). �
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A 1.5 Representing the Density Operator: Density

Matrix

We discuss in �rst place the case of discreet spectrum, with a complete and orthonormal

basis fjnig. In many instances, fjnig is the basis that makes diagonal a complete set

of observables. We expand the density operator in terms of this basis :

� =
X
i

wi j (i) ><  (i)j =
X
n;m

X
i

wijn >< nj (i) ><  (i)jm >< mj =

=
X
n;m

jn >< nj�jm><mj =
X
n;m

jn >< mj
 X

i

wi < nj (i) ><  (i)jm >

!
:

De�ning the linear coe¢ cients as a(i)n �< nj (i) >, i.e. j (i) >=
P

n a
(i)
n jn >, the

matrix elements of � are written as:

< nj�jm>=
X
i

wi a
(i)
n a

(i)�
m � ana�m ;

where the bar means average over the mixed ensemble and a� is the complex conjugate of

a. We remember that a(i)n �< nj (i) > is the probability amplitude that the state jn >

is contained in j (i) >. The corresponding probability is P (i)n =
���a(i)n ���2 = ���< nj (i) >

���2,
which appears in the diagonal matrix elements of � :

< nj�jn>=
X
i

wi
��a(i)n ��2 =X

i

wi P
(i)
n = 0 ;

which in turn, can be interpreted as a probability, since:

X
n

< nj�jn>=
X
i

wi
X
n

P (i)n =
X
i

wi = 1 :
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